SECTION - 3

KEY WATER PLANT MATH FORMULAS

General:

1. Lbs/Day $=\quad($ Vol, MGD $) \times($ Conc., mg/l) $\times 8.34 \mathrm{lbs} / \mathrm{gal})$
2. Dosage, mg/l $=$ (Feed, lbs/day) (Vol, MGD) x $8.34 \mathrm{lbs} / \mathrm{gal}$)
3. Rectangular Basin $=$ (Length, $\mathbf{f t}) \mathbf{x}($ Width, $\mathbf{f t}) \mathbf{x}($ Height, $\mathbf{f t})$ Volume, cu. ft.
i) Vol, Gals $=\quad$ Multiply the above by the factor 7.48 gals/cu.ft.
4. Right Cylinder $=(0.785) \times\left(D^{2}, f t.\right) \times($ Height or Depth,ft) Volume, cu. ft.
i) Vol, Gals $=\quad$ Multiply the above by the factor 7.48 gals/cu.ft.
$\begin{array}{lc}\text { 5. } & \text { Conical Base }= \\ \text { Volume, cu. ft. } & \frac{(0.785) \times\left(\mathrm{D}^{2}, \mathrm{ft}\right) \times(\text { Height or Depth,ft })}{3}\end{array}$
i) Vol, Gals $=$ Multiply the above by the factor 7.48 gals/cu.ft.
5. Trapezoid, Volume $=\quad\left(B_{1}+\underline{B}_{2}\right) \times$ Height, ft \times Length, ft. cu. ft.

2
i) Vol, Gals $=\quad$ Multiply the above by the factor 7.48 gals/cu.ft.
7. Removal, Percent $=\frac{(\text { In - Out })}{\text { In }} \times 100$
8. Decimal Fraction $=\frac{\text { (Percent) }}{100}$

GPCD means Gallons Per Capita Per Day. A Capita is one (1) person.
9. Gals/Day of $\quad=\quad($ Population $) \times($ Gals/Capita/Day $)$

Water Consumption, (Demand/Day)

Consumption Averages, per capita:

1. Winter - $\mathbf{1 7 0}$ GPCD
2. Spring - 225 GPCD
3. Summer - $\mathbf{3 2 5}$ GPCD
4. Gals/Capita/Day, $=$ (Vol, Gals/day
(Population, Served per day)
5. Supply, Days $=$ (Vol, Gals/day)
(Full to Tank Dry) (Population Served) x (GPCD)
6. GPD $=\quad$ (Meter Read 2, Gals - Meter Read 1, Gals) (Number of Days)
7. GPH $=$ (Volume, gallons \qquad) (Pumping Time, min. x $60 \mathrm{Min} / \mathrm{Hr}$)
8. Time, Hrs. $=$ (Volume, gallons) (Pumping Rate, GPM x $60 \mathrm{Min} / \mathrm{Hr}$)
9. Supply, Hrs. $=$ (Storage Volume, Gals \qquad (Full to Tank Dry) (Flow In, GPM - Flow Out, GPM) x 60 min/hr.
10. GPD Combined $=$ (Pump In, GPD) + (Clearwell Storage Volume, Consumption GPD Used)
11. Percent (\%) of $=\quad$ (Larger Amount) - $\mathbf{1 . 0} \times 100$ Increase (Smaller Amount)

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR
MATH FORMULAS - Continued

Chlorine Feed, Dosage/Demand/Residual:

Gas Chlorine Feed, Lbs/day

1. Lbs/Day $=($ Vol, MGD $) \times($ Conc., $\mathrm{mg} / \mathrm{l}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$

Dosage, $\mathrm{mg} / \mathrm{l}=\frac{(\mathrm{Lbs} / \text { day })}{(\text { MGD }) \times(8.34 \mathrm{lbs} / \text { gal })}$
65\% HTH Feed, Lbs/day - Calcium Hypochlorite
2. $\mathrm{HTH}, \mathrm{lbs} /$ Day $\quad=\quad($ Vol, MGD $) \times($ Conc., $\mathrm{mg} / \mathrm{l}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$ (0.65)

Dosage, $\mathrm{mg} / \mathrm{l}=(\mathrm{Lbs} /$ day $\times 0.65)$ (MGD) x ($8.34 \mathrm{lbs} / \mathrm{gal}$)

Lbs, 65\% HTH $=$ (Gals of Water x $8.34 \mathrm{lbs} / \mathrm{gal}) \times$ Solution (0.65)
$\underline{5-1 / 4 \%-12.5 \%}$ Liquid Chlorine - Sodium Hypochlorite
3. Lbs/Gal $=\quad$ (Solution Percentage) $\times 8.34 \mathrm{lbs} /$ gal \times S.G. 100

GPD $\quad=\quad($ Vol, MGD $) \times($ Conc., $\mathrm{mg} / \mathrm{l}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$ (Lbs/gal)

Dosage/Demand/Residual

$\left.\begin{array}{llll}\text { 4. } & \text { Dosage, } \mathrm{mg} / \mathrm{l} & = & (\text { Demand, } \mathrm{mg} / \mathrm{l})+(\text { Residual, } \mathrm{mg} / \mathrm{l}) \\ \text { 5. } & \text { Demand, } \mathrm{mg} / \mathrm{l} & = & (\text { Dosage, } \mathrm{mg} / \mathrm{l})-(\text { Residual, } \mathrm{mg} / \mathrm{l})\end{array}\right)$

MATH FORMULAS - Continued

COt Calculations

1. $\operatorname{Cot}=($ Chlorine Residual, $\mathrm{mg} / \mathrm{L}) \times($ Time, minutes
2. Time, minutes $\quad=\quad(\mathrm{C}$ ©t $)$
(Chlorine Residual, mg / L)
3. Chlorine Residual, $\mathrm{mg} / \mathrm{L}=\frac{(\mathrm{C} \bullet \mathrm{t})}{\text { (Time, minutes })}$
4. Inactivation Ratio

$$
=\frac{(\text { Actual System C } \bullet \text { t })}{(\text { Table "E" } C \bullet t}
$$

5. Cot Calculated $=T_{10}$ Value, minutes \times Chlorine Residual, mg / L
6. Log Removal $=$ (1.0 - \%Removal) x Log key x (-)

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR
 MATH FORMULAS - Continued

Fluoridation:

$$
\begin{aligned}
& \text { 1. Feed, }=(\operatorname{MGD}) \times(\mathrm{mg} / \mathrm{L}) \times 8.34 \mathrm{lbs} / \text { gallon } \times \text { S.G. } \\
& \text { Lbs/day (\% Purity } \times \text { \% Fluoride) } \\
& 100100 \\
& \text { Desired, Existing } \\
& \text { 2. Adjusted }=(M G D) \times(\mathrm{mg} / \mathrm{L}-\mathrm{mg} / \mathrm{L}) \times 8.34 \mathrm{lbs} / \text { gallon } \times \text { S.G. } \\
& \text { Feed, Lbs/day (\% Purity x \% Fluoride) } \\
& 100100 \\
& \text { 3. Dosage, } \left.\mathrm{mg} / \mathrm{L}=\frac{\left(\text { Feed, Lbs/day } \mathrm{x} \mathrm{Purity} \times \frac{\text { \% Fluoride }}{100}\right.}{(\mathrm{MGD}) \times 8.34 \mathrm{lbs} / \text { gallon } \times \text { S. }}\right)
\end{aligned}
$$

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS - Continued

1. Hydraulic (Water Column Height) Pressure :

i) PSI $=\frac{(\text { Head, ft. })}{2.31 \mathrm{ft} . / \text { PSI }}$
ii) PSI $=$ Head, ft. x 0.433 PSI/ft.

Or,
iii) Head, ft. $=$ PSI $\times 2.31 \mathrm{ft}$./PSI
iv) Head, ft $=\frac{\text { PSI }}{\mathbf{0 . 4 3 3} \text { PSI/ft. }}$

Pounds of Force On The Face of a Valve
2) Force, lbs $=($ Area, Sq. Inches $) \times$ PSI,

Or,
$3)$
Force, $\mathrm{lbs}=(0.785)(\mathrm{D}, \mathrm{ft} .)^{2} \times 144 \mathrm{sq.in} / \mathrm{sq} . \mathrm{ft} . \times$ PSI..$~$
Tank Bottom Force and Buoyancy

Tank Bottom Forces:

Rectangular Basins
4) Force, lbs $=\mathbf{L}, \mathrm{ft} \times \mathbf{~ W}, \mathrm{ft}, \mathrm{x} \mathrm{H}, \mathrm{ft}, \mathrm{x} 62.4 \mathrm{lbs} /$ cubic foot
$\frac{\text { Right Cylinders }}{5) \quad \text { Force, } 1 \mathrm{lbs}}=(\mathbf{0 . 7 8 5})(\mathrm{D}, \mathrm{ft} .)^{2} \times$ Height, ft. $\times 62.4 \mathrm{lbs} / \mathrm{cu} . \mathrm{ft}$.
Pounds Per Square Foot on a Tank Bottom:
Rectangular Basins
6) Force, lbs $=\mathbf{L}, \mathrm{ft} \times \mathrm{W}, \mathrm{ft}, \mathrm{x} \mathrm{H}, \mathrm{ft}, \mathrm{x} 62.4 \mathrm{lbs} /$ cubic foot
(Bottom Area, sq. ft.)
Right Cylinders
$\frac{\text { Force, } 1 \mathrm{lbs}}{7 \text {) }}=(\mathbf{0 . 7 8 5})(\mathrm{D}, \mathrm{ft} .)^{2} \times$ Height, ft. $\times 62.4 \mathrm{lbs} / \mathrm{cu} . \mathrm{ft}$.
(Bottom Area, sq. ft.)

Change of Direction

8. $\underset{\text { Force, } \mathrm{lbs}}{ }=2 \times\left[\right.$ Area, ${ }_{\text {sq.in. }} \times$ Pressure,, Psi $1 \times(1 / 2 \operatorname{Sin} \Theta)$ (Any Bend)

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS - Continued

Pumps and Pumping:

1. Pumping Rate:

Volume, Gals	$=$ GPM x Time, minutes
Rate, GPM	$=\frac{(\text { Tank Volume, Gals) }}{(\text { Time, minutes) }}$
Time, minutes	$=\frac{(\text { Tank Volume, Gals) }}{(\text { Fill Rate, GPM) }}$

2. Pump Size:
Water Horsepower $=\frac{(\text { GPM }) \times(\text { Total Head, } \mathrm{ft})}{(3,960)}$
Brake Horsepower $=\frac{(\text { GPM }) \times(\text { Total Head, } \mathrm{ft})}{(3,960) \times(\% \text { Efficiency })}$

\% Overall Effic.
(Pump/Motor)

3. Pumping Cost:

Cost, $\$=(\mathrm{BHp}) \times(0.746 \mathrm{Kw} / \mathrm{Hp}) \times($ Operating Hrs. $) \times \mathrm{c} / \mathrm{Kw}-\mathrm{Hr}$. 100
4. Wells:

Drawdown, ft. $=$ Pumping Level, ft. - Static Level, ft.
Specific Capacity, GPM/ft. $=\quad$ Well Yield, GPM Drawdown, ft.

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS - Continued

Strength of Solutions:

3. $\mathrm{Lbs} /$ gallon $=(\%$ Solution $) \times 8.34 \mathrm{lbs} /$ gallon $\times($ Specific Gravity $)$ (100)
4. Lbs Chemical $=$ Specific Gravity $\times 8.34 \mathrm{lbs} /$ gallons \times Gallons of Solution
5. Specific Gravity $=\frac{(8.34 \mathrm{lbs} / \text { gallon }+ \text { Chemical Wt., Lbs/gallon })}{(8.34 \mathrm{lbs} / \text { gallon })}$
6. Specific Gravity, $=\quad($ S.G. $\times 8.34 \mathrm{lbs} / \mathrm{gal})-(8.34 \mathrm{lbs} / \mathrm{gal})$ Lbs/gallon
7. $\%$ Percent of $=$ (Dry Chemical, Lbs
(Dry Wt. Chemical, Lbs) + (Water, Lbs)
Chemical in Solution
8. Two-Normal Equations:
a) $\quad \mathbf{C}_{1} \mathbf{V}_{1}=\mathbf{C}_{2} \mathbf{V}_{2}$
b) $\quad \frac{\mathbf{Q}_{1-}}{\mathbf{V}_{1}}=\frac{\mathbf{Q}_{2}}{\mathbf{V}_{2}}$
9. Three Normal equations:
a)
$\left(C_{1} V_{1}\right)+$
$\left(\mathrm{C}_{2} \mathrm{~V}_{2}\right)=$
$\left(\mathrm{C}_{3} \mathrm{~V}_{3}\right)$

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS - Continued

Sedimentation Tanks and Clarifiers:

Hydraulic Cross-check Formulas:

1. Surface Loading $=$ (Total Flow, GPD) Rate, GPD/sq ft. (Surface Area, sq.ft.) Design Data: 800-1,200 GPD/Sq.ft.
2. Detention $=$ (Volume, gals) x (24 Hrs./day)

Time, Hrs. (Total 24 Hr. Flow, Gals/day)
Design Data: 1-4 Hours; Average 2.5 Hrs.
3. Flow, GPD $=$ (Volume, gals) $\mathbf{x}(24$ Hrs./day) (Detention Time, Hrs.)
4. Weir Overflow $=$ (Flow, GPD)

Rate, GPD/L.F. (Weir length, ft.)
Design Data: 10,000-40,000 GPD/LF; Average 20,000 GPD/L.F.
5. Circumference, $\mathrm{ft}=3.141(\mathrm{Pi}) \mathrm{x}$ Diameter, ft .
6. Solids Loading $=$ (Solids into Clarifier, lbs/day)

Rate, lbs/day/sq. ft. (Surface Area, sq. ft.)
7. Sludge Solids, lbs $=$ (Flow, Gals) $\times(8.34 \mathrm{lbs} / \mathrm{gal}) \times($ Sludge, \%)
8. Raw Sludge $=\frac{\text { (Settleable Solids, } \mathrm{ml} / \mathrm{L} \text {) } \times \text { (Plant Flow, GPM) }}{\text { 8 }}$

Pumping, gpm
($1,000 \mathrm{mls} / \mathrm{L}$)
9. Sludge Volume $=$ (Settled Sludge Volume, $\mathrm{ml} / \mathrm{l}) \times(1,000 \mathrm{mg} / \mathrm{G})$

Index, mg/l (SVI)
(Suspended Matter, mg/l)
10. $\mathrm{mg} / \mathrm{l}=\frac{(\mathrm{ml} \mathrm{x} \mathrm{1,000,000})}{(\mathrm{ml} \mathrm{sample})}$

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS - Continued

Filtration:

1. Filter Flow Rate:

Filtration Rate, GPM $=\quad($ Filter Area, sq.ft. $) \times($ GPM/sq.ft.)
2. Filtration Rate, $\quad=\quad$ (Flow Rate, GPM) GPM/sq.ft. (Filter Area, sq.ft.)
3. Filtration Rate $=$ (Filter Area,sq.ft.) $\times($ GPM $/$ sq.ft. $) \times 1,440 \mathrm{~min} /$ day Rate, GPD
4. Backwash Rate:

Backwash Pumping = (Filter Area,sq.ft.) x (Backwash Rate, GPM/sq.ft.) Rate, GPM
5. Backwash Volume, $=$ (Filter Area,sq.ft.) x (Backwash Rate, gpm/sq.ft.) x Gallons
(Time, min).
6. Backwash $=$ (Backwash Volume, gpm) Rate, GPM/sq.ft. (Filter Area, sq.ft.)
7. Backwash, GPM $=$ (Filter Area, sq.ft.) \times (Height, Rise/Fall/Drop, $\mathrm{ft} / \mathrm{min}$) x (7.48 gals/cu.ft.)
8. Rate of Rise, $=$ (Height, Rise/Fall/Drop, $\mathrm{ft} / \mathrm{min}) \times(7.48$ gals/cu.ft.) GPM/Sq. Ft.
9. Rate of Rise, GPM/sq.ft. $=$ (Time, min) \times (Height, ft.) $\times 7.48$ gals/cu.ft.

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR
 MATH FORMULAS - Continued

Velocity:

1. \mathbf{Q}, cfs $=\quad$ (Area, sq. ft. $) \times($ Velocity, fps)

$$
\frac{(\text { GPM })}{(448.8 \mathrm{GPM} / \mathrm{cfs})}=(0.785) \times(\mathrm{D}, \mathrm{ft})^{2} \times \frac{(\text { Distance, ft. })}{(\text { Time, seconds })}
$$

2. Velocity.fps $=(\mathbf{O}, \mathbf{c f s})$ (Area, sq. ft.)
3. Area, sq. ft. $=(\mathbf{Q}, \mathbf{c f s})$
(Velocity, fps)
4. Flow Conversions:

Flow, GPM $=(\mathrm{Q}, \mathrm{cfs}) \times(448.8 \mathrm{GPM} / \mathrm{cfs})$
5. Q, Cfs $=\frac{(\text { Flow, GPM })}{(448.8 \mathrm{GPM} / \mathrm{cfs})}$
6. $\begin{aligned} & \text { Pipe Diameter, } \\ & \text { Inches }\end{aligned}=\sqrt{ }(\underline{\text { Area, sq.ft. }}) \times 12$ inches $/ \mathrm{ft}$
7. $\begin{aligned} & \text { Actual Leakage, } \\ & \text { GPD/Mile-inch }\end{aligned}=\quad \frac{\text { Leak Rate, GPD }}{\text { (Length, Mile) } \times(\text { Diameter, inch })}$
$\begin{array}{lll}\text { Note: } & \text { Minimum Flushing Velocity: } & \text { 2.5 FPS } \\ & \text { Maximum Pipe Velocity: } & \text { 5.0 FPS }\end{array}$

Key Conversions: $\mathbf{1 . 5 5} \mathbf{c f s} / \mathbf{m g d}$
448.8 GPM/cfs

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS - Continued

Headloss Due to Friction:

1. Darcy-Weisbach:

Headloss, $\mathrm{ft}=(\mathbf{f}) \frac{\mathbf{L}_{\mathrm{ft}} \times \mathbf{V}^{\mathbf{2}}}{\mathrm{D}, \mathrm{ft}_{\mathrm{t}} \times 2 \mathrm{~g}}$ (Use the Moody Diagram for ' f '")
2. Hazen - Williams
3. Manning

$$
\mathrm{C}, \mathrm{cfs} \quad=\quad 1.49 \mathrm{AR}^{2 / 3} \mathrm{~S}^{1 / 2}
$$

$$
\text { Slope } \quad=\frac{\left.\mathrm{CFS} \times \mathrm{n}_{2 \not 3}\right]^{2}}{\left[1.49 \times \mathrm{AR}^{2}\right]}
$$

$$
\begin{aligned}
& \text { Q,gpm } \quad=0.28 \times C \times D^{2.63} \times S^{0.54} \\
& \text { "C" Factor }=\frac{\text { Flow, } \text { gpm }_{2.63}}{193.75(\text { D,ft })} \text { (Slope) } 0.54 \\
& \mathrm{HL} / 1,000 \mathrm{ft} .=\left(\frac{147.85 \times \mathrm{GPM}}{\left.\mathrm{C} \times \mathrm{d}^{2.55}\right)}\right)^{1.852} \\
& \mathrm{~V}_{\text {,fps }} \quad=\quad 1.32 \times \mathrm{CxR}^{0.63}\left(\frac{\mathrm{H})^{0.54}}{}\right.
\end{aligned}
$$

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS - Continued

Ion Exchange:

1. Calcium Hardness as $\mathrm{mg} / \mathrm{laCO}_{3}=(2.5) \times($ Calcium, mg/l)
2. Magnesium Hardness as $\mathrm{mg} / \mathrm{CaCO}_{3}=(4.1) \times$ (Magnesium, mg/l)
3. Total Hardness $=$ Calcium + Magnesium Hardness as $\mathbf{C a C O}_{3}$.
4. Convert Hardness from mg / l to grains/gallon:

$$
\text { Grains/gallon }=\frac{(\text { Total Hardness, } \mathrm{mg} / \mathrm{l})}{(17.1 \mathrm{mg} / \mathrm{l} / \text { Grain }}
$$

5. Total Exchange Capacity, $=$ (Resin Cap., kilograins/cu.ft.) x (Vol, cu.ft.)

Kilograins
6. Total Grains Capacity $=$ Kilograins $\times 1,000$
7. Gals of Soft Water per $=$ (Total Exchange Capacity x Kilograins x 1,000)

Service Run
)
8. By-Pass Water, GPD $=$ (Flow, GPD) \times (Effluent Hardness, Gr/Gal

2
9. By-Pass Water, $\% \quad=$ (Discharge Hardness, $m g / 1) \times 100$
(Initial Hardness, mg/l)

Ion Exchange Formulas
 (Continued)

10. Salt, lbs
$=\quad($ Capacity, Grains $) \times($ Salt, lbs $)$
(1,000 Grains)
11. Brine, Gals
$=\frac{(\text { Salt Needed, lbs })}{(\text { Salt } \mathrm{lbs} / \text { gallon })}$
12. Hardness $=$ (Influent Hardness, mg / l - Effluent Hardness, mg /l

2
Removed, Grains
($17.1 \mathrm{mg} / \mathrm{L} /$ Grain $)$
13. $\underset{\text { By-pass }}{\text { \% S Soft Water }}=\frac{\text { (Blended Discharge Hardness, } \mathrm{mg} / \mathrm{L} \text {) }}{\text { (Initial Hardness, } \mathrm{mg} / \mathrm{L}} \times 100$

By-pass
14. GPM By-Pass $=\frac{(\% \text { By-Pass })}{100} \times($ Total Flow, GPM $)$
15. Total Flow

Thru Softener, GPM $=$ (Total Flow, GPM) - (By-Pass Flow, GPM)

Lime - Soda Ash Softening

16. Lbs = (MGD) x (Dosage, mg/Lx (Soda Ash - Mol Wt.) x $8.34 \mathrm{lbs} / \mathrm{gal}$ Hardness (Calcium Carbonate Mol. Wt.) Removed

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS - Continued

Jar Testing:

1.	Dosage, mg/l =	$\frac{(\text { Stock, } \mathrm{ml}) \times 1,000 \mathrm{mg} / \mathrm{gram} \times(\text { Conc., Grams } / \mathrm{L})}{(\text { Sample Size, ml) }}$
2.	Grams/Liter =	$\frac{(\mathrm{mg} / \mathrm{lx} 1,000 \mathrm{ml})}{(\mathrm{ml} \times 1,000 \mathrm{mg} / \mathrm{l})}$

3.	Alum =	($1.0 \mathrm{mg} / 1$ Alum) x (Raw Alk., mg/l - Alk. Present, mg/l
2	Reacting, mg/l	($0.45 \mathrm{mg} / 1$ Alkalinity)
4.	Alkalinity Dosage, mg/l	$=($ Total Alum, mg/l - Alum Reacting, mg/l $)$
5.	Dilute Solution, mg/L	$=\frac{(\mathrm{mg} \text { of Alum dosage }) \times(1,000 \mathrm{ml} / \mathrm{L})}{(1.0 \mathrm{ml} / \mathrm{L})}$
6.	Grams	$=\frac{(\mathrm{mg}) \times(1.0 \text { gram })}{(1,000 \mathrm{mg} / \mathrm{l})}$
7.	mg / L	$=\frac{(\text { Grams } x 1,000 \mathrm{mg} / \mathrm{L})}{(1.0 \text { gram })}$

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS - Continued

Laboratory:

1. TSS (mg/l) = Paper Wt. and Dried Solids $(\mathrm{g})-$ Paper Wt. $(\mathrm{g}) \mathbf{x} 1,000,000$ (Milliliters [ml] of Sample)
2. $\underset{\substack{\text { Total Solids, } \\ \mathrm{mg} / \mathrm{l}}}{=} \frac{(\text { Residue, } \mathrm{mg}) \times 1,000}{(\mathrm{ml} \mathrm{sample})}$
3. Total Alkalinity, $=$ (mls of titrant x Normality $\times 50,000$) $\mathrm{Mg} / 1$ (mls of Sample)
4. Langelier Index $=\quad(\mathrm{pH}-\mathrm{pH}$, Saturated $)$
5. Concentrations:
$($ Conc. 1$) \times($ Volume 1$)=($ Conc. 2$) \times($ Volume 2$)$
6. $\mathrm{mg} / \mathrm{l}=\frac{(\mathrm{ml} \times 1,000,000)}{(\mathrm{ml} \mathrm{sample})}$
$\mathrm{mg} / \mathrm{l}=\mathrm{ml} \times 1,000 \mathrm{ml} / \mathrm{L}$
7. $\mathrm{mg} / \mathrm{l} \mathrm{Total}$ Solids $=\frac{(\text { Residue, } \mathrm{mg}) \times 1,000}{(\mathrm{ml} \mathrm{sample})}$
8. Temperature:

$$
\begin{aligned}
\mathrm{F}^{\circ} & =\left(\mathrm{C}^{\circ} \times 1.8\right)+32^{\circ} \\
\mathrm{C}^{\circ} & =\frac{\left(\mathrm{F}^{\circ}-32^{\circ}\right)}{(1.8)}
\end{aligned}
$$

ABBREVIATIONS

Ac-ft	Acre feet	M		Meter
AFC	Actual fluoride content		M	Mile
C°	Celsius		mg / l Liter	Milligram per
CCF	Hundred Cubic Feet	MGD		Million Gals/Day
Cf	Cubic feet (ft^{3})		ml	Milliliter
CFS	Cubic Feet Per Second	msl		Mean Sea Level
F°	Fahrenheit	ppm		Parts per Million
Gal	Gallon(s)	Q		Flow, cu. ft/sec.
GPM	Gallons Per Minute	π		Pi (3.141)
GPD	Gallons Per Day	Sq. ft.		Square feet (ft^{2})
GPH	Gallons Per Hour	Sq. Yd		Square Yards (ft^{3})
GPCD	Gallons per capita per day		SWD	Side Wall Depth
H	Height		$\mu \mathrm{g} / \mathrm{L}$	Microgram/Liter
Hp	Horsepower	V		Velocity
BHp	Brake Horsepower	V		Volume
Whp	Water Horse power			
KW-Hrs	Kilowatt hours			
Lbs	Pounds			
Lbs/Day	Pounds per day			
L	Liter			
END				
Updated:	March, 2002			

